Deliverable – D4.3 Initial benchmarking towards evolving wideband communication and sensing

Project acronym	SEQUENCE
Project number	871764
Project title	Cryogenic 3D Nanoelectronics (<u>S</u> ense and Readout <u>E</u> lectronics Cryogenically Integrated for <u>QU</u> an- tum ENhanced Computation and Evolving Communication)

Document Properties	
Nature of Document	Report
Work Package	WP4 – Evolving Communication and Sensing
Task Leader	Beneficiary 1 – ULUND
Authors	Lars-Erik Wernersson (ULUND), Simon Olson (CTA), Didier Belot (LETI), Fabian Thome (IAF)
Version	1.0
Status of Document	Final
Due Date of deliverable	M18
Actual delivery date	M18
Dissemination Level	PU

Document	Document history					
Version	Date	Author	Status – Reason for change			
0.1	2021-05-19	Report Template	Initial draft			
0.2	2021-05-27	Lars-Erik Wernersson	Input from ULUND			
0.3	2021-06-02	Simon Olson	Input from CTA			
0.4	2021-06-16	Fabian Thome	Input from IAF			
0.5	2021-06-17	Didier Belot	Input from LETI			
0.6	2021-06-21	Lars-Erik Wernersson	Editing and adjustments			
1.0	2021-06-24	Lars-Erik Wernesson	Final version			

Release approval					
Version	Date	Name and organisation	Role		
1.0	2021-06-24	Lars-Erik Wernersson	Project Coordinator		

The project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement number 871764 (SEQUENCE)

Disclaimer:

The material contained in this document is provided for information purposes only. No warranty is given in relation to use that may be made of it and neither the copyright owners or the European Commission accept any liability for loss or damage to a third party arising from such use.

Copyright Notice:

Copyright SEQUENCE Consortium 2020. All rights reserved.

Table of Contents:

1	D	Device Level Benchmarking of Transistor Technologies							
2	D	igital (CMOS circuits Benchmarking	3					
	2.1	Stat	e of the Art Presentation	4					
	2.2	SEC	QUENCE Research Orientation	6					
3	W	/ireles	s Wideband communication and sensing at Room Temperature	8					
	3.1 Com	Mult nmuni	i-Frequency Signal Sources for Reference for Multi-Channel Digital Complex Modulat cations	ed 8					
	3.2	2 Wideband D-band RF-Switches							
	3.3	Integ	gration of LNAs and RF-Switches	10					
4	W	/ireles	s Space 40K - 70K communications and sensing	11					
	4.1	Qua	drature LO signals for the RX and TX chains (E-band at RT)	11					
	4.	.1.1	LO signal architectures-sub-harmonic generation	11					
	4.	.1.2	LO signal architectures-harmonic generation (no sub. harm. Mixer)	12					
	4.	.1.3	Conclusions LO generation in RT	13					
	4.2	Ben	chmarking of E/W-Band LNA + Switch	14					
5	R	eferer	nces	15					

Introduction

This deliverable describes state-of-the-art for transistor technology and circuitry for communication and sensing applications. The transistor data has been delivered by the SEQUENCE partners and analysed within WP2. The circuit data is selected from the literature and from the efforts within WP4. This deliverable serves as a basis for the work in the second part of SEQUENCE.

1 Device Level Benchmarking of Transistor Technologies

Four different types of transistor architectures are considered within SEQUENCE; Si SOI, Si FinFETs, III-V HEMTs and III-V MOSFETs. Combined they represent the best options for various circuit design considerations. The Si SOI and FinFET technologies provide CMOS functionality combined with integration potential for Si QuBit Devices. III-V HEMTs and III-V MOSFETs provide the best option for low noise and low-power analogue circuit building blocks critical for control and read-out electronics for Quantum applications. It is important to compare and benchmark the performance of different transistor types to be able to select the best technology option available.

During the first half of the SEQUENCE project, we have selected and benchmarked the transistor performance provided by the consortium partners and that has been measured and reported within WP2. The data is compared at two different temperatures indicated by red (RT) and blue (4K), presented in Table 1.1. During the second phase of SEQUENCE, this benchmark table will be updated and completed with data from competing efforts to compare the European effort to the international competition.

	Tech- nology	Com- pany	L _g (nm)	l _{on} (μΑ/μ m)	Slope	R _{on} Ωμm	g _m (mS/μ m)	f _t / f _{max} (GHz)	f _{max} (GHz)	V _d (V)	Ref
FD-SOI	STM 28 nm	STM	30	625	75	540	1.4			0.9	[1.1]
	STM 28 nm	STM	30	625	30	466	1.7			0.9	
	GF 22 nm	GF	18		73	370	1.8			1.0	[1.2]
	GF 22 nm	GF	18		17	270	2.3			1.0	
Fin- FETs	TSMC	TSMC	16		80	237	2.5			1.1	[1.3]
	TSMC	TSMC	16		20	156	3.1			1.1	
HEMTs	30 nm mHEM T	IAF	35	-		230	2.3			0.5	[1.4]
	30 nm mHEM T	IAF				190	2.45	>500		0.5	
III-V MOS- FETs	Ver- tical NWs	ULUND	25			190	3.1			0.5	[1.5]

Table 1.1. Device technology benchmark comparison.

2 Digital CMOS circuits Benchmarking

Cryogenic digital CMOS design is a pioneer activity targeting the improvement of the computing performances. Even if the frozen power cost must be at the end of the day, this thematic tries to demonstrate that this approach could be a performance extension of technology nodes anterior of leading edge ones in the Moore law. We have selected two papers [2.1; 2.2] from last year presenting experiences at 77K [2.1] and at 4K [2.2]. The two temperatures can be easily achieved applying Liquid Nitrogen (LN) at 77K and Liquid Helium (LHe) at 4K. In our approach, we are targeting the CMOS optimum efficiency that would be between these two temperatures.

2.1 State of the Art Presentation

Motivation of paper [2.1] was the high performance computing cryogenic increase by a dramatic reduction of devices leakage and metallic resistance reducing the temperature, cf. Fig. 2.1. They proposed to define a specific Cryogenic architecture at 77K. They characterised and benchmarked CMOS technology-nodes over temperature showing that whatever the node, from 90nm to 180nm, the carrier mobility and the saturation velocity increase in a quasi-quadratic relation to the temperature reduction, while the threshold voltage increase linearly with the temperature reduction in the range from 300K to 77K. The drawback being the parasitic gate resistance, which increases by a factor of 20% (PMOS) and 40% (NMOS) from 300K to 77K. Finally, the On-channel current increases by 30% while the leakage current is reduced by 2 decades from 300K to 77K, cf. Fig. 2.2. In addition, they did characterisation of the metal lines, and showed that the resistivity of the metal is reduced by 2.5 times from 300K to 77K.

Figure 2.1. From [2.1], Extension to the baseline MOSFET model: (a) Carrier mobility; (b) Saturation velocity; (c) Threshold voltage; (d) Parasitic resistance model.

All of these parameter evolutions on actives and passives, allow them to present a high performance core (CHP-core) achieving an increase of the clock frequency by 51%, and a low power core (CLP-core) achieving a power reduction by 38% reducing temperature from 300K to 77K.

Figure 2.2. From [2.1], MOSFET Ion and Ioff versus temperature.

Motivation of paper [2.2] was the development of a RISK-V unit in CMOS 40nm, as close as possible from the Quantum qubits, this means at the lowest possible temperature, without affecting the qubit temperature, (20mK), by heating actions. They targeted 4K. The first part of the work was to do extrapolation of electrical parameter of the technology, as they did not found in the literature specific study down to 4K. Their comparison to state of the art is reproduced in Fig. 2.3. Theoretically they define a CMOS inverter VDDmin@300K = 36mV and VDDmin@4K = 2.47mV. Finally, the minimum voltage at 300K is actually 0.3V and at 4K 0.59V. This shows that extrapolations between 300K and 4K are not valid, while it was valid between 300K and 77K. Despite of this, they achieve an increase of the clock frequency at 1.2V from 475MHz at 300K to 750MHz at 4K. Finally, they concluded that the difference between theoretical values and achievable values comes from the Vth control, which is not done in Bulk CMOS, and proposes to explore in the future technologies as FDSOI, which allows the Vth control by the back-gate.

	This	Work	ESSCIRC'18	JSSC'17 [9]
			[8]	
Technology	40-nm	CMOS	28-nm	40-nm
			FDSOI	CMOS
Architecture	RV3	2IM	RV32IM	Cortex-M0
Temperature	4.2 K	300 K	300 K	300 K
F_{MAX}	$740 \mathrm{~MHz}$	$475 \mathrm{~MHz}$	-	-
	@ 1.2 V	@ 1.2 V		
$F @ V_{MIN}$	9 MHz	3.2 MHz	1 MHz	0.8 MHz
	@ 0.59 V	@ 0.3 V	@ 0.25 V	@ 0.2 V
Min. E_{CORE}	8.90 pJ	5.80 pJ	4.18 pJ	8.80 pJ
Min.	0.037	0.061	0.075	0.6
EDP_{CORE}	pJ/MHz	pJ/MHz	$\rm pJ/MHz$	pJ/MHz

COMPARISON WITH STATE-OF-THE-ART

Figure 2.3. From [2.2], RISK-V benchmark.

From these two experiences, we can define the trends the two research groups have exhibited. The following Table 2.1 gives a summary of these trends:

Papers	Circuits	Frequency trend	Power Trend	Vddmin Trend
	CHP-core 300K to 77K	+51%	0%	-
[2.1]	90nm-180nm Bulk			
	CLP-core 300K to 77K	0%	-38%	-
[2.1]	90nm-180nm Bulk			
	RV32IM 300K to 4K	+55%	0%	+96%
[2.2]	40nm Bulk			
	RV32IM Meas/simu @ 4K			+23 880%
[2.2]	40nm Bulk			

Table 2.1.	Trends in frequency,	power, and Vddmir	n for different	technologies.
	J 1 //		, ,,	5

The two experiences are comparable in term of frequency increase versus the temperature; the benefit of the 4K temperature is not clear versus the one at 77K. Vddmin is the drawback of the RV32IM circuit as the Vth increases when the temperature decreases. This would be one advantage of the FDSOI process.

2.2 SEQUENCE Research Orientation

Motivation of Cryogenic Digital CMOS SEQUENCE research is:

- To fill the gap between 77K and 4K, where an optimum should be found.
- To prove the interest of FDSOI for Vth control.
- To propose new technologies in this temperature range as III-V Nanowires.

In order to evaluate the potentiality of CMOS digital structures in the 4K-77K temperature range, LETI is developing a CMOS ring oscillator in FDSOI CMOS. This structure will be characterized with and without Vth control. Without Vth control results will be comparable to [2.2] at 4K and [2.1] at 77K, in addition we should find again the trends of these two papers. With the Vth control, we will explore the advantage we would have at 4K and 77K. And we will also evaluate the models accuracy, outcomes from WP2 in the gap between 4K and 77K: Examples of tables that will be filled when measurements will be available are given in Table 2.2 and Table 2.3, now left blank.

Ring-O	Parame-	4K	10K	30K	50K	70K	300K
	ters						
Without	Vddmin						
Vth	Fmax						
Control	P @ 1.2V						
With Vth	Vddmin						
Control	Fmax						
	P @ 1.2V						

Table 2.2. Different temperature measurements of Key parameters.

Ring-O	Freq	@	4K	10K	30K	50K	70K	300K
Without Vth Control	Meas							
	Simu							
With Vth Control	Meas							
	Simu							

Table 2.3. Simulation / Measurement comparison on Ring-O Frequency.

The FDSOI 28nm we use are delivered by the industrial and are guaranteed down to 200K, we have done simulation of the 28nm Ring-Oscillator with and without Vth compensation by Back-gate voltage (Vbg) at this temperature, and compared to the result obtained at 300K. These results from these initial simulations are given in Table 2.4.

Table 2.4. Ring oscillator simulation results in FDSOI 28 nm	
--	--

Simulation	300K	200K with control	200K with control
		Vbg = 0V	Vbg up to 1V
Ring-O Frequency	12,2GHz	11,7GHz	Up to 14,5GHz

This means that we can compensate the frequency variation; this result is in line with the CEA publication [2.3] where the Vth compensation of the 28nm FDSOI transistor by Vbg is presented. In these two CEA experiences, the increase of the frequency when the temperature is decreasing is not a reality as Vth increases. This is the case if maintaining Vth at the same value as at 300K.

In order to evaluate new III-V Nanowires technology at cryogenic temperature, an inverter is developed by university of Lund. This inverter will be compared to Silicon FDSOI inverter used by the Ringoscillator developed by LETI. A comparison of the performances obtained in the best case of FDSOI to the III-V nanowires will drive the consortium to define where the technologies are the most efficient: Examples of table that will be filled when measurements will be available is given in Table 2.5, now left blank.

Inverter	Parame-	4K	10K	30K	50K	70K	300K
	ters						
FDSOI	Vddmin						
	Тр						
	P @ 1.2V						
III-V Nan-	Vddmin						
owires	Тр						
	P @ 1.2V						

Table 2.5. FDSOI / III-V CMOS measurements comparison of Key parameters.

3 Wireless Wideband communication and sensing at Room Temperature

3.1 Multi-Frequency Signal Sources for Reference for Multi-Channel Digital Complex Modulated Communications

Multi-Qbit addressing is one of the Quantum computing applications, actually each qubit needs one manipulation connection and one read connection, the numbers of connections between ambient temperature and cryogenic temperature becomes a nightmare when increasing a lot, the number of qubits. The idea is to do multi-frequency generator which can be wired by a minimum number of connections. This is the approach we have, and in another way shown in Fig. 3.1-2, Intel approach too [3.1]. Main difference between Intel approach and ours, is the temperature where is placed the frequency generator. Intel proposes to place it close to the Qubit, at 4K, and to transfer from ambient temperature to 4K the digital control (parallel 8 bits or more). We go one step ahead, we do the multi-frequency generation at ambient temperature, and transfer only one cable with all frequencies to 4K. Between 4K and Qubit temperature, the approach is similar.

Figure 3.1. Intel approach, the circuit is in FFT 22nm and works at 4K.

		This Work	[B. Patra, 2020 ISSCC]	[J. Bardin, 2019 ISSCC]	This Work	 Readout 	This Work –	Gate Pulsing
Qubit pl	atform	Spin qubits	Transmons + spin qubits	Transmons	Freq.	Vac 6 gubita	# Channele	22
Contr	oller	Drive, Readout with Digital Detector,	Drive	Drive	multiplexing	res, o qubits	# Channels	(simultaneous)
capat	oility	Gate Pulsing, µ-Controller	Dilve	Dilve	TX output from		Amplitude	+0.4Vf
		Drive: 5.2mW/qubit ^a			ix output neq.	DC = 0.00112	range	±0.4V
	Analog	Readout TX/RX: 1.3/9.3mW/qubit	1.7mW/qubit	<2mW/qubit	TX output	-70 to -40dBm	Amplitude res.	11 bits
Power		Gate pulsing: 2.9mW/channel			power			
	Digital	10 – 140mW ^b @ 1 6GHz clock	Digital: 330mW @ 1GHz	N/A	RX RF freq.	200 – 600MHz	Pulse width	10ns – 2.6ms
	g		clock		RX gain	40 – 90dB	Pulse width	2.5ns
Chip	area	16mm ²	4mm ²	1.6mm ²			resolution	
Technology		22nm FinFET CMOS	22nm FinFET CMOS	28nm bulk CMOS	RX noise	44K	Rise/fall time	~50ns9
		Drive			temperature®			00110-
Freq. r	ange	11 – 17GHz @ >-10dBm	2 – 20GHz @ >-45dBm	4 – 8GHz	RX baseband	60 - 200MHz	Output rms	200.01/
Freq. mult	tiplexing	Yes, 16 qubits	Yes, 32 qubits	No	BW	00 - 200101112	noise	200µ vrms
Samplin	ng rate	up to 2.5GS/s	1GS/s	1GS/s	Filter order	eth	Output	500
IM	,	< 50dPo @ > 17dPm (11 to 17CHz)	<-50dBc @ -18dBm	NI/A	Filter of der	0	impedance	5052
IW	、	<-300BC @ >-170Bill (11 to 17012)	(6.25GHz)	IN/A	ADC	SAR, 7.5 bits,	^a For max P _{out}	
Data ban	dwidth	up to 2GHz	1GHz	400MHz	ADC	400MS/s	Depending on activi	ty
Digita	I FIR	Yes, 2 notches per qubit	No	No	Qubit state	Integrated	Per codeword, per o	JUDIT arde and 16 gubite
Envelor	0 eizo	16 384 points AW/GS	Lin to 40.960 points AWG	Fixed 22 points	detector	Integrated	eIntegrated over 60M	Hz BW
Livelop	00 3120	10,304 points AWG	op to 40,000 points AWG	symmetric			Around DC output vo	oltage
Instruct	ion set	2 ¹⁹ codewords per qubit	2 ³ codewords per qubit	2 ⁴ codewords			9With 14pF load	
Output im	pedance	50Ω	N/A	N/A				
LO IQ ger	neration	Integrated on-chip hybrid	External off-chip hybrid (PCB)	External off-chip hybrid				

Figure 3.2. Intel work compared to the previous state of Art.

SEQUENCE Horizon 2020 Grant Agreement 871764

We will compare our approach to these ones, the first point, is that we don't work at 4K, then we don't have Thermic issues, as they have in their approaches. Second point, in this demonstration we have limited our band to 6GHz with frequency step of 1GHz, but the concept can be extended to bigger bands, with bigger number of steps. For this first benchmark, we don't have measurement results, the foundry step begins end of June 21, we will have results beginning of 2022.

3.2 Wideband D-band RF-Switches

In Table 3.1 various technologies of primarily $\lambda/4$ -shunt SPDT switches for D-band are benchmarked Different technologies with similar topologies are compared to understand state of the art performance for D-band switches. Wideband D-band switches are a necessity in different kind of high frequency systems such as communication systems, radars, and remote sensing. The technologies that are considered within the SEQUENCE project are promising for usage within these applications. Initial benchmarking of SPDT D-band switches is reported in this section.

Ref.	Technology	Topology	First author affil- iation	f _T /f _{MAX} (GHz)	Year	freq (GHz)	Insertion loss(dB)	lsolation (dB)	r _{on} ·C _{off} (fs)	Comment
[3.2]	32nm CMOS SOI	λ/4-shunt	Georgia Institute of Technology	210/245	2015	110-170	2.6-4	22	-	
[3.3]	50nm In- GaAs mHEMT	λ/4-shunt	Fraunhofer (IAF)	375/670	2018	52-168	3.1	42.1	110.3	
[3.3]	50nm In- GaAs mHEMT	Novel λ/4- shunt	Fraunhofer (IAF)	375/670	2018	75-170	4.5	56.4	110.3	
[3.4]	0.13 um SiGe HBT	λ/4-shunt	Georgia Institute of Technology	300/500	2014	96-163	2.6-3	23.5-29	83.7	
[3.5]	0.13 um SiGe HBT	λ/4-shunt	IHP	300/500	2019	110-170	2.0-3.0	21-26	-	
[3.6]	800 nm InP DHBT	λ/4-shunt	Ferdinand- Braun-Institut (FBH)	350/350	2019	90-170	3.0-5.0	42-55	-	
[3.7]	65 nm CMOS	λ/4-shunt	University of To- ronto	300/400	2009	110-170	4.0-5.0	26.5-32	-	
[3.8]	0.13 μm SiGe BiC- MOS	RF MEMS	IHP	505/720	2017	110-170	1.42-1.9	20-54.5	-	
[3.9]	50nm In- GaAs NW*	λ/4-shunt	Lund University	-/-	2020	29-69	2.7	27.2	165	
[3.10]	50 nm In- GaAs NW*	λ/4-shunt	C2Amps + Lund University	310/350	2020	97.5-120	2	>20	-	
This Work	50nm, In- GaAs NW *	λ/4-shunt	C2Amps	310/350	2021	110-170	2.65	>20	135	

Table 3.1. Benchmark of SPDT switches.

*Simulated

The switch performance as well as the technology f_T/f_{max} is reported. Isolation and insertion loss demands vary between applications. Generally, in a transceiver the antenna switch will switch between the antenna and LNA while the PA always is connected to the antenna. It is not feasible to have the insertion loss from a switch in series with the PA because the loss would be too large. The switch insertion loss will need to be as low as possible to keep the noise figure of the receiver low. Isolation will need to be sufficient so that the output signal of the PA does not break the LNA. In mm-Wave systems the output power of the PA is lower than for systems for lower frequencies (4G around 26dB and 5G around 15 dBm). The isolation requirement should follow the same trend and is then lower than previously.

State of the art performance is around 2-2.5 dB insertion loss and around 25 dB isolation for the standard $\lambda/4$ -shunt topology, novel topologies can reach isolation up to 55 dB.

The reported values for vertical nanowire switches are simulated results only, however the results show great promise especially considering the Ft/Fmax of the technology. There is great reason to look further into using the nanowire technology for high frequency band switches. Manufacturing of vertical nanowire switches is scheduled within the SEQUENCE project.

3.3 Integration of LNAs and RF-Switches

The D-band LNA benchmark is provided in Table 3.2. In general, for an LNA, regardless of carrier frequency, the most important performance metrics are the noise figure (NF), gain, linearity, and compression point. For validation of millimeter wave LNAs, there is often only one signal generator available, therefore, intermodulation measurements are often missing. A large bandwidth is desirable, since it makes the LNA more resilient to process spread. A high gain can be achieved by cascading several stages, at the prize of increased power consumption. The noise figure is to a large extent impacted by the f_T/f_{MAX} of the process technology. If the carrier frequency is too close to the cut-off frequency, the NF will deteriorate strongly. However, the back end of line (BEOL) of the process technology also has a significant impact, due to the limited Q-value of inductors and transformers. When comparing different LNAs it is important to distinguish between wafer and packages measurements. A commercial standalone LNA always includes a package that can add around 1 dB loss at D-band frequencies. In the table, GaAs mHEMT, CMOS, GaN, InP DHBT, InP HEMT, SiGe, and Vertical Nanowire (VNW) designs are compared. For the InP HEMT, GaN DHFET and VNW designs, only simulated data is reported. The VNW device has the lowest NF of 2.8 dB (simulated), while the highest reported NF is at about 6 dB (GaN DHFET projected only). The GaInAs mHEMT from Fraunhofer has the lowest measured NF of 3.0 dB. An LNA designed in a quite old technology (CMOS 65) has a measured NF of 4.7 dB @148 GHz. The bandwidth of that design is only 11 GHz though. The VNW design also suffers from low BW (10 GHz).

SEQUENCE Horizon 2020 Grant Agreement 871764

Ref.	Technology	Topology	First author affiliation	f _T /f _{MAX} (GHz)	Year	Max S21 (dB)	BW _{3dB} (GHz)	Min NF (dB)	VCC (V)	P _{DC} (mW)	Comment
[3.11]	GaAs 40 nm mHEMT	4 stages	University of Rome	400/600	2017	>20	115- 160	4.0 @140 GHz	1.2	82	OMMIC foundry in France
[3.12]	GalnAs mHEMT 50 nm	Casc, Casc, Casc	Fraunhofer	380/670	2017	30.8	97-155	3.0 dB @119 GHz 3.4 (mean)	1.4	57.6	
[3.13]	CMOS 65 nm	SE, 2 CS	KAIST, Korea	/310	2021	17.9	11	4.7 @148 GHz, 6.2 @150 GHz	0.65	13.73	Advanced matching net- work, narrow- band
[3.14]	GaN DHFET T- gate 40 nm	SE, 6 stages	HRL labora- tories, Mal- ibu	200/400	2017	>25	110- 170	~6 (pro- jected)	5	225	NF not meas- ured
[3.15]	InP DHBT	Single de- vice	Brandenburg univ.	330/350	2020	-	-	6.0 @105 GHz	1.5	7.5	Device meas- urement, W- band, wafer
[3.16]	InP HEMT	5 CS	Hangzhou Dianzi Uni- versity, Hangzhou, China	-	2018	>18.5	120- 150	<4.5	-	47	Simulation only, wafer
[3.17]	SiGe 0.13 μm BiCMOS	CS, Casc, Casc, Cs	Sabanci Univ, Turkey, IHP	300/500	2018	25.3	112- 156	5.9 (fit- ted)	1.5/2.5	30	Wafer
[3.18]	SiGe 0.13 μm BiCMOS	Casc, Casc	Georgia In- stitute of Technology	300/500	2015	>20	110- 140	5.5	2.0	112	Inductive CB base termina- tion
[3.19]	SiGe 0.13 μm BiCMOS	4 Casc	Sabanci Univ, Turkey, IHP	300/500	2018	32.6	52	4.8	-	28	NF <6.1dB across D-band
[3.10]	50 nm InGaAs NW*	Diff, Casc, Casc	C2Amps + Lund Univer- sity	310/350	2020	24.5	10	2.8	1.5/2.5	73.1	Simulated only

Table 3.2. Benchmark of D-band LNAs.

4 Wireless Space 40K - 70K communications and sensing

4.1 Quadrature LO signals for the RX and TX chains (E-band at RT)

The direct-conversion transceiver architecture with zero-IF does not require any external filter. This means high integration level and low cost. However, the LO frequency is equal to the center frequency of the RF signal. This could result in issues with self-mixing in the receiver as well as LO pulling at the transmitter. A subharmonic mixer (SHM) typically utilizes the second-order harmonic of the mixer, thereby solving the issues above.

4.1.1 LO signal architectures-sub-harmonic generation

A subharmonic mixer [4.1]-[4.8] often uses the second order nonlinearity (2x SHM) of the mixer core. However, 3x SHMs [4.1] and 4xSHMs have also been designed. The mixing element could also be a Schottky diode. Yet another alternative is to create a LO signal that is rich in second order harmonics (LO signal with 25% duty cycle) [4.4]. This is however not really an alternative at mm-wave frequencies. A benchmark of sub-harmonic mixers is provided in Table 4.1. The diode-based SHMs usually have quite low gain, increasing the requirements on the preceding LNA. The SHMs based on active mixers have higher gain. An advantage is that the frequency of the VCO is reduced, thereby improving the phase noise. The referenced works do not have a PLL included.

Ref.	Technology	Topology	PLL in- cluded	First au- thor affilia- tion	f _T /f _{MAX} (GHz)	Year	Max G _{conv} (dB)	freq. (GHz)	OP _{1dB} (dBm)	Isol. 2LO- RF (dB)	P _{DC} (mW)	Comment
[4.2]	0.13 μm SiGe BiC- MOS with	2xSHM, active mixer	No	MC2, Chalmers	250/370	2017	2.6	98- 140	-6	45	46	Switching mixer core in fundamental tone, LO dou- bling in tail.
[4.3]	Discrete, Skyworks Schottky di- odes DMK2308	4xSHM, diode	No	Lahore, Pa- kistan	-	2015	-13.4	57-59	-	>50	N/A	Simulated
[4.5]	GaAs 70nm mHEMT	2x SHM, Coupler, diode	No	Hangzhou, China	-	2020	-16.2	110- 170	-	In the meas. Noise floor	13.73	Broadband
[4.6]	CMOS 90 nm	2x SHM, active mixer	No	Taiwan univ.	-	2018	9	70-88	-	>40	5	High conver- sion gain, low PDC
[4.7]	0.13 μm pHEMT	2x SHM, diode	No	Plextek, UK	-	2012	-11	71-86	-	-	-	
[4.8]	CMOS 65nm	2xSHM, mixer	No	Kaist, Ko- rea	-	2015	3.4	75-81	-15.6	38	12	Gm-boost

Table 4.1. Sub-harmonic LO generation benchmark.

4.1.2 LO signal architectures-harmonic generation (no sub. harm. Mixer)

An LO architecture based on harmonic signal generation [4.9]-[4.14] is based around a VCO (or QVCO) that is at a fraction of the wanted carrier frequency. The upconversion to carrier LO frequency is not based on for instance the second order nonlinearity of the mixer core as for the sub-harmonic mixer, and the conversion gain is therefore higher. A benchmark of harmonic LO generation is provided in Table 4.2. For frequency multiplication, techniques such as injection locking, harmonic tripler circuits and upconversion active mixers can be used. The architectures are generally less complex than the ones used in the SHMs. Generally, at mm-wave frequencies, architectures that are based on polyphase filters for creation of different LO phases should be avoided, since the matching and process spread becomes worse with increasing frequency. Phase mismatch is also an issue for the QVCO in the selected topology. A competitive PLL should typically have a phase noise that is less than -90 dBc/Hz @ 1 MHz offset. The actual system requirement depends on the modulation scheme and the application. Typically, fixed radio links do not change their carrier frequency so PLL locking time is less of an issue. The PLL bandwidth can therefore be set low, which suppresses the phase noise of the VCO inside the loop bandwidth.

SEQUENCE Horizon 2020 Grant Agreement 871764

Ref	Technology	Topology	With PLL	First author affiliation	f _T /f _{MAX} (GHz)	Year	PN (dBc/Hz @ 1MHz offset)	freq. (GHz)	P _{DC} (mW)	Comment
[4.9]	SiGe 0.18 μm BiCMOS	30 GHz PLL plus triplers	Yes	UCLA, USA	200/180	2012	-93 @96 GHz	90.9- 101.4	140	Based on fre- quency triplers
[4.10]	CMOS 65 nm	Injection locked QVCO (QILO) QILO is used as a frequency tripler.	Yes	Tokyo, Inst. Of Tech.	-	2011	-95 @60 GHz	58-63	80	20 GHz PLL
[4.11]	IBM CMOS 130 nm	Triple push VCO	No	Rensselaer Polytechnic Institute, USA	-	2010	-95 @ 10 MHz off- set	55-65	95	Three VCO's @ 20 GHz
[4.12]	CMOS 65 nm	Doubler, IQ div., inj. locked tri- pler	Yes	Hong Kong Univ.	-	2015	-92	59-86	54	
[4.13]	SiGe 0.18 μm	Sliding IF	No	Lund Univ.	200/250	2016	-97.5 (est.)	81-86	109	Including QVCO and upconverter
[4.14]	SiGe 0.18 µm	QVCO + ac- tive loop fil- ter	Yes, only PLL no LO at carrier freq.	Lund Univ.	200/250	2016	-107 @28 GHz	28	56.7	Based on 28 GHz QVCO, corre- sponds to -97.5 dBc/Hz @84 GHz

Table 4.2. Harmonic LO generation benchmark.

4.1.3 Conclusions LO generation in RT

Several options are available for LO generation for E-band mixers. However, the LO generation cannot be analyzed standalone. Instead, the performance of e.g. the mixer also sets the requirements on the surrounding blocks like the RX LNA. If there is significant attenuation in the mixer, the LNA will need to provide more gain to overcome the noise of the mixer.

It is advantageous to base the LO generation on a VCO that operates on a fraction of the LO-frequency since this improves the phase noise and reduces the power consumption of the VCO.

At mm-wave frequencies, the effect of capacitance mismatch becomes more severe, and it is difficult to control the phase of LO signal with accuracy. Architectures based on cancellation of unwanted harmonics by adding LO signals with different phases in subharmonic mixers are therefore less suitable. The use of polyphase filters for generating the required LO phases for subharmonic mixers cannot be recommended unless mismatch can be controlled.

A SHM always has lower gain for the harmonics than the fundamental. A passive SHM can be designed using anti-parallel Schottky diodes. These can be used in e.g. 2x or 4x SHM:s. It is a simple design, but a large drawback is the low conversion gain, often lower than -10 dB.

A low complexity of the LO generation is always desired. If the layout becomes complicated and matching is crucial, it is less probable to be successful without several iterations. The selected topology for E-band LO generation is the sliding IF architecture based on a VCO that is the LO-frequency divided by three.

Compared to the SHM presented in [4.1], the VCO frequency could be selected to be the same as in the selected topology. In the sliding IF-architecture, the design is based on a QVCO, which is a slightly more complex topology. However, the active mixers in the selected topology operate on their fundamental LO frequency, thereby generating a substantial gain. With $f_{QVCO} = f_{LO}/3$ there is significantly less nulling of the VCO frequency has a transmitter.

pulling of the VCO from PA in a transmitter.

A drawback is the more complex layout since both the four fundamental signals at 28 GHz and the second harmonic at 56 GHz need to be routed out from the QVCO without interfering with each other. A second drawback is the power consumption of the driver buffers for the 28 and 56 GHz LO signals. This topology does not depend on cancellation of unwanted harmonics created in the SHM in [4.1]. This is a large advantage.

4.2 Benchmarking of E/W-Band LNA + Switch

State-of-the-art LNAs in the frequency range from of approximately 70 - 116 GHz are based on InGaAs HEMT devices and are made either of so called InP HEMTs or metamorphic HEMTs (mHEMTs). Reported data in literature either target applications with room temperature or in the temperature range of approximately 15 K. In the temperature range of approximately 40 - 70 K no noise temperature can be found. However, the temperature range of around 50 K is most interesting for future satellite sensing applications, e.g. weather observation satellites. Technology improvements over the past years improved the system noise temperature of such systems down to a limit where further performance improvements at room temperature are more and more difficult to achieve.

Since noise measurement setup at cryogenic conditions in the frequency range of around 100 GHz in general do not allow on-wafer probing, noise measurements under these conditions require the packaging of the LNA MMICs in waveguide housings. One has to be kept in mind that the packaging cause additional loss, which are then part of the measured noise temperature of such LNAs. Thus, all LNAs in the given list are LNA modules. Corresponding state-of-the-art results including the simulated results, which are reported in D4.2, are given in Table 4.3. For room temperature condition, the listed data in Table 4.4 are MMIC results. This allows a better comparison to the simulated data of D4.2.

Reference	Technology	Frequency	Ambient Temperature	Gain	Noise Temperature
		[GHz]	[K]	[dB]	[K]
[4.15]	50-nm InGaAs mHEMT	70 – 116	15	21.8 – 27.7	20.6 - 40.1
[4.15]	35-nm InGaAs mHEMT	70 – 116	15	19.1 – 28	23 - 41.9
[4.16]	35-nm InP HEMT	70 – 114	20	< 15	22 – 28
[4.17]	35-nm InP HEMT	75 – 116	27	20 – 29	25 – 39
[4.18]	35-nm InP HEMT	75 – 115	22	23 – 32	24 - 41
[4.19]	35-nm InP HEMT	85 – 116	27	20 – 29	23 – 33
[4.20]	100-nm InP HEMT	65 – 116	16	n/a	22.3 – 40
This work D4.2	50-nm InGaAs mHEMT	min. 75 – 110	50	26 – 29	31.2 - 38.2

Table 1 2. State of	f the Art E/M/ Pan	d INA Madulas	Operating at	Crucaonia	Conditions
1 UDIE 4.5. Stute-0	j-liie-Ail E/ W-Duii	u LINA IVIOUUIES	Operating at	Crybyenic	conuntions.

Reference	Technology	Frequency Gain		Noise
				Temperature
		[GHz]	[dB]	[K]
[4.21]	35-nm InGaAs mHEMT	75 – 110	23 – 28	129 – 191 (avg. 159)
[4.22]	50-nm InGaAs mHEMT	75 – 108	25 – 33	132 – 243 (avg. 159)
[4.23]	50-nm InGaAs mHEMT	71 – 86	20 – 26	129 – 202 (avg. 159)
[4.24]	50-nm InGaAs mHEMT	66 - 104	20 – 27	139 – 226
[4.21]	50-nm InGaAs mHEMT	75 – 110	20 – 27	149 – 238 (avg. 180)
[4.25]	35-nm InP HEMT	75 – 90	22.5 – 29	129 – 226
This work D4.2	50-nm InGaAs mHEMT	min. 75 – 110	25 – 29	130 – 159

Table 4.4. State-of-the-Art E/W-Band LNA MMICs Operating at Room Temperature.

For SPDT switch MMICs in the W-band frequency range, literature values are only available for room temperature operation. Thus, Table 4.5 shows only room-temperature data.

 Table 4.5 State-of-the-Art E/W-Band Switch MMICs Operating at Room Temperature.

Reference	Technology	Frequency [GHz]	Isolation [dB]	Insertion Loss [dB]
[4.26]	50-nm InGaAs mHEMT	75 – 110	28.5 - 31.4	1-1.6
[4.27]	InGaAs pHEMT	50 – 70	32 – 41.3	1.3 – 1.8
[4.28]	GaAs pHEMT	40 – 85	> 31	1.2 – 2
[4.29]	100-nm GaN HEMT	60 – 90	22.5 – 25.5	1.5 – 1.8
[4.30]	GaAs Diode	75 – 110	> 31	1.1 - 1.6
[4.31]	100-nm GaN HEMT	72 – 131	18.5 – 21.5	1.1-2
[4.32]	SiGe Diode	77 – 133	19 – 22	1.4 – 2
[4.33]	50-nm InGaAs mHEMT	143 – 305	13.5 – 22.8	1.5 – 2.5
This work D4.2				
297 К	50-nm InGaAs mHEMT	min. 75 – 110	> 30	1-1.4
50 K		min. 75 – 110	> 30	0.8-1.1

5 References

[1.1] B. Cardoso Paz, M. Cassé, C. Theodorou, G. Ghibaudo, M. Vinet, S. de Franceschi, T. Meunier and F. Gaillard "Performance and Low Frequency Noise of 22nm FDSOI down to 4.2K for Cryogenic Applications". IEEE Trans Electron Devices, 67, 4563-4567 (2020)

[1.2] Hung-Chi Han etal, to be submitted for publication 2021

[1.3] Hung-Chi Han, Farzan Jazaeri, Antonio D'Amico, Andrea Baschirottoy, Edoardo Charbon, and Christian Enz Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing ESSDERC 2021

[1.4] Felix Heinz, Fabian Thome, Arnulf Leuther, and Oliver Ambacher" A 50-nm Gate-Length Metamorphic HEMT Technology Optimized for Cryogenic Ultra-Low-Noise Operation" IEEE Transaction MTT 2021 (in press)

[1.5] O.-P. Kilpi, M. Hellenbrand, J. Svensson, A. Persson, R. Wallenberg, E. Lind, L.-E. Wernersson High-Performance Vertical III-V Nanowire MOSFETs on Si with gm > 3 mS/ μ m IEEE Electron Dev. Lett., 41, 1161 (2020)

[2.1] Ilkwon Byun; Dongmoon Min; Gyu-hyeon Lee; Seongmin Na; and Jangwoo Kim; (Seoul National University); "CryoCore: A Fast and Dense Processor Architecture for Cryogenic Computing"; 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[2.2] E.Schriek; F.Sebastiano; and E.Charbon; (University of Delft); "A Cryo-CMOS Digital Cell Libraryfor Quantum Computing Applications; IEEE Solid-State Circuits Letters, Vol. 3, 2020

[2.3] H. Bohuslavskyi, S. Barraud, V. Barral, M. Cassé, L. Le Guevel, L. Hutin, et al., "Cryogenic characterization of 28-nm FD-SOI ring oscillators with energy efficiency optimization", IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 3682-3688, Sep. 2018

[3.1] S.Pellerano, "Horse Ridge: a Cryogenic SoC for Spin Qubit Control Implemented in Intel FinFET Technology to Enable Scalable Quantum Computersto Enable Scalable Quantum Computers", WS "Cryogenic RF and mmW technology and circuit platforms: a path toward Quantum-Computing", IMS 2021, 20th of June 21.

[3.2] W. T. Khan *et al.*, "A D-band (110 to 170 GHz) SPDT switch in 32 nm CMOS SOI," *2015 IEEE MTT-S International Microwave Symposium*, 2015, pp. 1-3, doi: 10.1109/MWSYM.2015.7167061.

[3.3] F. Thome and O. Ambacher, "Highly Isolating and Broadband Single-Pole Double-Throw Switches for Millimeter-Wave Applications Up to 330 GHz," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 66, no. 4, pp. 1998-2009, April 2018, doi: 10.1109/TMTT.2017.2777980.

[3.4] A. Ç. Ulusoy *et al.*, "A Low-Loss and High Isolation D-Band SPDT Switch Utilizing Deep-Saturated SiGe HBTs," in *IEEE Microwave and Wireless Components Letters*, vol. 24, no. 6, pp. 400-402, June 2014, doi: 10.1109/LMWC.2014.2313529.

[3.5] A. Karakuzulu, A. Malignaggi and D. Kissinger, "Low Insertion Loss D-band SPDT Switches Using Reverse and Forward Saturated SiGe HBTs," *2019 IEEE Radio and Wireless Symposium (RWS)*, 2019, pp. 1-3, doi: 10.1109/RWS.2019.8714362.

[3.6] T. Shivan *et al.*, "Highly linear 90-170 GHz SPDT Switch with High Isolation for Fully Integrated InP Transceivers," *2019 IEEE MTT-S International Microwave Symposium (IMS)*, 2019, pp. 1011-1014, doi: 10.1109/MWSYM.2019.8700974.

[3.7] E. Laskin *et al.*, "Nanoscale CMOS Transceiver Design in the 90–170-GHz Range," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 57, no. 12, pp. 3477-3490, Dec. 2009, doi: 10.1109/TMTT.2009.2034071.

[3.8] S. Tolunay Wipf, A. Göritz, M. Wietstruck, C. Wipf, and M. Kaynak, "BiCMOS embedded RF-MEMS technologies," *MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektron. Syst. Proc.*, pp. 109–111, 2017.

[3.9] M.Sandberg, "III-V Nanowire MOSFETs for mm-Wave Switch Applications" M.S. thesis, Lund University (2020).

[3.10] A.Grenmyr, "Nanowire based mm-wave LNA and switch design" M.S. thesis, Lund University (2020).

[3.11] R. Cleriti et al., "D-band LNA using a 40-nm GaAs mHEMT technology," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017, pp. 105-108, doi: 10.23919/EuMIC.2017.8230671.

[3.12] R. Weber, H. Massler and A. Leuther, "D-band low-noise amplifier MMIC with 50 % bandwidth and 3.0 dB noise figure in 100 nm and 50 nm mHEMT technology," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 756-759, doi: 10.1109/MWSYM.2017.8058686.

[3.13] B. Yun, D. -W. Park, H. U. Mahmood, D. Kim and S. -G. Lee, "A D-Band High-Gain and Low-Power LNA in 65-nm CMOS by Adopting Simultaneous Noise- and Input-Matched Gmax-Core," in IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2021.3066972.

[3.14] A. Kurdoghlian et al., "First demonstration of broadband W-band and D-band GaN MMICs for next generation communication systems," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1126-1128, doi: 10.1109/MWSYM.2017.8058796.

[3.15] E. Kaule, R. Doerner, N. Weimann and M. Rudolph, "Modeling the Noise of Transferred-Substrate InP DHBTs at Highest Frequencies," 2020 German Microwave Conference (GeMiC), 2020, pp. 52-55.

[3.16] D. Yang, J. Wen, M. He and R. He, "A D-band Monolithic Low Noise Amplifier on InP HEMT Technology," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 2018, pp. 1-4, doi: 10.1109/ISAPE.2018.8634087.

[3.17] B. Ustundag, E. Turkmen, B. Cetindogan, A. Guner, M. Kaynak and Y. Gurbuz, "Low-Noise Amplifiers for W-Band and D-Band Passive Imaging Systems in SiGe BiCMOS Technology," 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 651-653, doi: 10.23919/APMC.2018.8617582.

[3.18] A. Ç. Ulusoy et al., "A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 61-63, Jan. 2015, doi: 10.1109/LMWC.2014.2369992.

[3.19] E. Turkmen, A. Burak, A. Guner, I. Kalyoncu, M. Kaynak and Y. Gurbuz, "A SiGe HBT D-Band LNA With Butterworth Response and Noise Reduction Technique," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 6, pp. 524-526, June 2018, doi: 10.1109/LMWC.2018.2831450.

[4.1] H. Lee, J. Myeong and B. Min, "A 26GHz CMOS 3× Subharmonic Mixer With a Fundamental Frequency Rejection Technique," in *IEEE Access, vol. 8, pp. 122986-122996, 2020*, doi: 10.1109/AC-CESS.2020.3007316.

[4.2] N. Seyedhosseinzadeh, A. Nabavi, S. Carpenter, Z. S. He, M. Bao and H. Zirath, "A 100–140 GHz SiGe-BiCMOS sub-harmonic down-converter mixer," *2017 12th European Microwave Integrated Circuits Conference (EuMIC)*, 2017, pp. 17-20, doi: 10.23919/EuMIC.2017.8230649.

[4.3] M. Q. Shafique, I. E. Rana, "Design of a Low-Cost High isolation Subharmonic Mixer in mmwaves using Schottky Diodes," *Journal of Space Technology*, vol. V, no. 1, 2015

[4.4] Ali. M. Niknejad, "Advanced Mixers", 2014, http://rfic.eecs.berkeley.edu/ee242/pdf/Mod-ule_5_4_AdvMixer.pdf

[4.5] Shengzhou Zhang 3 and Lingling Sun 2 , "A Compact Broadband Monolithic Sub-Harmonic Mixer Using Multi-Line Coupler," *MDPI*, 2020

[4.6] Y.-C. Wu, and H. Wang, "An E-band Double-Balanced Subharmonic Mixer with High Conversion Gain and Low Power in 90-nm CMOS Process," *IEEE microwave and wireless component letters,* vol. 28, no. 1, 2018

[4.7] A. Dearn, L. Devlin and J. Nelson, "A sub-harmonic E-band IRM/SSB realized on a low cost PHEMT process," *2012 7th European Microwave Integrated Circuit Conference*, 2012, pp. 282-284.

[4.8] J. Jang, J. Oh and S. Hong, "A 79 GHz gm-boosted sub-harmonic mixer with high conversion gain in 65nm CMOS," 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2015, pp. 11-14, doi: 10.1109/RFIC.2015.7337692

[4.9] C.-C. Wang, Z Chen, P. Heydari, "W-band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers," *IEEE Transactions on Microwave Theory and Techniques*, pp. 1307-1320, vol. 60, no. 5, 2012

[4.10] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, A. Matsuzawa, "A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-wave Applications," *IEEE Journal of Solid-State Circuits*, pp. 2635-2649, vol. 46, no. 11, Nov. 2011

[4.11] B. Catli. M. M. Hella, "Triple-Push Operation for Combined Oscillation/Division Functionality in Millimeter-Wave Frequency Synthesizers," *IEEE Journal of Solid-State Circuits*, pp. 1575-1589, vol. 45, no. 8, Nov 2010

[4.12] Z. Huang, H. C. Luong, B. Chi, Z. Wang and H. Jia, "25.6 A 70.5-to-85.5GHz 65nm phase-locked loop with passive scaling of loop filter," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-3, doi: 10.1109/ISSCC.2015.7063119.

[4.13] T. Tired, P. Sandrup, A. Nejdel, J. Wernehag, H. Sjöland "System simulations of a 1.5 V SiGe 81-86 GHz E-band transmitter," *Springer Analog integrated circuits and signal processing*, Dec. 2016

[4.14] T. Tired et al., "A 1.5 V 28 GHz Beam Steering SiGe PLL for an 81-86 GHz E-Band Transmitter," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 843-845, Oct. 2016, doi: 10.1109/LMWC.2016.2605452.

[4.15] F. Thome, A. Leuther, J. D. Gallego, F. Schäfer, M. Schlechtweg, and O. Ambacher, "70–116-GHz LNAs in 35-nm and 50-nm Gate-LengthMetamorphic HEMT Technologies for Cryogenic and Room-Temperature Operation," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 1495–1498.

[4.16] D. Cuadrado-Calle et al., "Broadband MMIC LNAs for ALMA Band 2+3 With Noise Temperature Below 28 K," IEEE Trans. Microw. Theory Tech., vol. 65, no. 5, pp. 1589–1597, May 2017.

[4.17] M. Varonen et al., "A 75-116-GHz LNA with 23-K noise temperature at 108 GHz," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1–3.

[4.18] L. Samoska et al., "W-Band cryogenic InP MMIC LNAs with noise below 30K," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.

[4.19] M. Varonen et al., "An MMIC Low-Noise Amplifier Design Technique," IEEE Trans. Microw. Theory Tech., vol. 64, no. 3, pp. 826–835, Mar. 2016.

[4.20] Y. Tang et al., "Cryogenic W-band LNA for ALMA band 2+3 with average noise temperature of 24 K," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 176–179.

[4.21] F. Thome, A. Leuther, H. Massler, M. Schlechtweg, and O. Ambacher, "Comparison of a 35-nm and a 50-nm Gate-Length Metamorphic HEMT Technology for Millimeter-Wave Low-Noise Amplifier MMICs," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 752–755.

[4.22] F. Thome, A. Leuther, F. Heinz, and O. Ambacher, "W-band LNA MMICs based on a noise-optimized 50-nm gate-length metamorphic HEMT technology," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2019, pp. 168–171.

[4.23] P. Smith et al., "A 50nm MHEMT millimeter-wave MMIC LNA with wideband noise and gain performance," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4.

[4.24] A. Tessmann et al., "A Millimeter-Wave Low-Noise Amplifier MMIC with Integrated Power Detector and Gain Control Functionality," in IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1–3.

[4.25] N. Estella, L. Bui, E. Camargo, and J. Schellenberg, "35nm InP HEMT LNAs at E-W-Band Frequencies," in IEEE Compound Semicond. Integr. Circuits Symp. Dig., Oct. 2016, pp. 1–3.

[4.26] F. Thome, A. Leuther, and O. Ambacher, "Low-Loss Millimeter-Wave SPDT Switch MMICs in a Metamorphic HEMT Technology," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, pp. 197–200, Feb. 2020.

[4.27] T. Shimura, Y. Mimino, K. Nakamura, Y. Aoki, and S. Kuroda, "High isolation V-band SPDT switch MMIC for high power use," in IEEE MTT-S Int. Microw. Symp. Dig., May 2001, pp. 245–248.

[4.28] J. Kim, W. Ko, S.-H. Kim, J. Jeong, and Y. Kwon, "A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure," IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp. 505–507, Dec. 2003.

[4.29] F. Thome, P. Brückner, R. Quay, and O. Ambacher, "Millimeterwave single-pole double-throw switches based on a 100-nm gate-length AlGaN/GaN-HEMT technology," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2019, pp. 1403–1406.

[4.30] F. Steinhagen, H. Massler, W. H. Haydl, A. Hulsmann, and K. Kohler, "Coplanar W-band SPDT and SPTT resonated PIN diode switches," in Proc. 29th Eur. Microw. Conf., Oct. 1999, pp. 53–56.

[4.31] F. Thome, E. Ture, P. Brückner, R. Quay, and O. Ambacher, "W-band SPDT switches in planar and tri-gate 100-nm gate-length GaN-HEMT technology," in Proc. 11th German Microw. Conf. (GeMiC), Mar. 2018, pp. 331–334.

[4.32] P. Song, R. Schmid, A. Ç. Ulusoy, and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2014, pp. 195–198.

[4.33] F. Thome and O. Ambacher, "Highly isolating and broadband single-pole double-throw switches for millimeter-wave applications up to 330 GHz," IEEE Trans. Microw. Theory Tech., vol. 66, no. 4, pp. 1998–2009, Apr. 2018.